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Desired Compensation Adaptive Robust Control of Electrical-optical
Gyro-stabilized Platform with Continuous Friction Compensation Using
Modified LuGre Model
Yuefei Wu* and Dong Yue

Abstract: Continuous friction compensation along with other modeling uncertainties is concerned in this paper,
to result in a continuous control input, which is more suitable for controller implementation. To accomplish this
control task, a novel continuously differentiable nonlinear friction model is synthesized by modifying the traditional
piecewise continuous LuGre model, then a desired compensation version of the adaptive robust controller is pro-
posed for precise tracking control of electrical-optical gyro-stabilized platform systems. As a result, the adaptive
compensation and the regressor in the proposed controller will depend on the desired trajectory and on-line parame-
ter estimates only. Hence, the effect of measurement noise can be reduced and then high control performance can be
expected. Furthermore, the proposed controller theoretically guarantees an asymptotic output tracking performance
even in the presence of modeling uncertainties. Extensively comparative experimental results are obtained to verify
the effectiveness of the proposed control strategy.

Keywords: Adaptive robust control, desired compensation friction compensation, three-axis electrical-optical gyro-
stabilized platform (TEOGSP).

1. INTRODUCTION

Three-axis electrical-optical gyro-stabilized platform
(TEOGSP) equipment has been used widely in the flight
military area such as precision striking of fire-control
weapons, warning and trajectory predicted of missile and
landing [1]. When the aircraft vibrates, even a small im-
balance distance existing in the load can lead to a large
mass imbalance torque. These disturbances existing in the
TEOGSP equipment integrate a characteristic of nonlin-
ear and modelling uncertainties [2, 3], resulting in a seri-
ous degradation of control accuracy [4, 5]. For high pre-
cision motion performance, the friction problem is one of
the significant limitations since friction is a very compli-
cated phenomenon. To predict the underlying nonlinear
friction for controller compensation, many friction mod-
els are proposed in [6, 7]. Among of them, the LuGre
model in [8] has been widely employed for controller de-
sign, due to its simple structure and capability to capture
most of the observed frictional behaviors. In order to adapt
to the backstepping controller designing process, some
novel continuously differentiable modified LuGre models
were proposed in [9, 10] is utilized to develop a continu-
ous friction compensation law to handle other structured
uncertainties and unstructured uncertainties for a motion
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system directly driven by a dc motor. This new static fric-
tion model proposed in [11, 12] captures the major effects
of friction without involving discontinuous or piecewise
continuous functions.

Though all above mentioned control strategies can ef-
fectively solve the control problems in uncertain nonlin-
ear systems, the effects of measurement noise via full state
feedback are not specifically taken into consideration. A
good alternative way of attenuating the effect of measure-
ment noise is the desired compensation adaptation law
which was first proposed in [13] for the trajectory tracking
control of robot manipulators. The strategy is applied to
the precision motion control of linear motor drive systems
in [14] and excellent tracking performance is obtained in
experiments. To address the problem of unmatched model
uncertainties, a general framework on the desired compen-
sation adaptive robust control (DCARC) backstepping de-
sign procedure [15] will be used. However, for uncertain
nonlinear systems with unmatched modeling uncertainties
and input nonlinearities, the desired values of the interme-
diate state variables cannot be predetermined based on the
methods in [15–17]. In [18], a general way of construct-
ing the desired values of intermediate state variables was
theoretically discussed to overcome the design difficulties
associated with unmatched modeling uncertainties for a
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class of uncertain nonlinear systems. Different from the
linear motor drive system in [18], the model-based de-
sired compensation adaptive robust controller (DCARC)
is also developed in [19] to reduce the overall control ef-
fort/chattering and the noise sensitivity problem in appli-
cation, and thus the tracking accuracy can be further im-
proved.

Motivated by the above observations, this paper em-
ploys a new continuously differentiable friction model
proposed in [12] to develop a continuous friction com-
pensation law that cancels the majority of nonlinear fric-
tion in the systems, while in conjunction with the desired
compensation version of the adaptive robust control ap-
proach [20] to handle other unconsidered disturbances for
electrical-optical gyro-stabilized platform systems. In our
proposed controller, the model based desired compensa-
tion is employed to reduce the overall control chattering
and the noise sensitivity in application, and thus, the track-
ing accuracy can be further improved.

The proposed approach in this paper presents an asymp-
totic output tracking performance in the presence of mod-
eling uncertainties with adequate friction compensation,
which is vital for high-precision motion control. More-
over, the desired compensation technique utilized in our
controller has the unique feature that the model compen-
sation law depends on the reference trajectory only. Fur-
thermore, the interaction between the parameter adapta-
tion and the robust control law is reduced, which may
facilitate the controller gain tuning process considerably.
Comparative experimental results are obtained for verifi-
cation on TEOGSP system.

2. PROBLEM FORMULATION AND DYNAMIC
MODELS

2.1. Modeling of the TEOGSP system
For an TEOGSP, the plant is composed of three parts:

dc brushed torque motor, gear transmission, and gimbal
system, as shown in Fig. 1. The gears and gimbal are usu-
ally regarded as rigid bodies. Based on this, the dynamic
model of an TEOGSP is summarized as

Ldi/dt + iR+KENωl = u,(
N2Jm + Jl

) dωl

dt
= NKF i−Td −Tf ,

dθl

dt
= ωl ,

(1)

where u is the motor voltage, i the motor current, L the
armature inductance, R the resistor, N the gear transmis-
sion ratio, KF the motor torque coefficient, Jm the motor
inertia moment, Jl the gimbal inertia moment, θl the at-
titude angle, ωl the angular rate, KE is the electromotive
force coefficient, Tf represents the nonlinear friction, Td

represents the unconsidered dynamic as well as external
disturbance.

Fig. 1. System model for an STEOGSP (a) DC brushed
motor (b) Gear transmission (c) Gimbal system.

There have been many friction models proposed in [10],
but they cannot be used in backstepping controller design
because of the discontinuous property. The friction force
T f can be described by

Tf (t) = σ0z+σ1ż+σ2ω, (2)

where σ0, σ1 and σ2 represent the friction force parame-
ters which can be physically interpreted as stiffness coeffi-
cient, z represents the unmeasurable internal friction state,
and its characteristic is governed by

ż = ω
[

1− 1
g(ω)

z
]
,

g(ω) = ( fs − fc) [tanh(λ1ω)− tanh(λ2ω)]

+ l2 tanh(λ3ω)+ l3ω, (3)

where fc and fs represent the levels of the normalized
Coulomb friction and stiction force respectively; l1, l2 and
l3 represent different friction levels; and λ1, λ2, λ3 denote
various shape coefficients to approximate various friction
effects.

The state variables of the TEOGSP system are chosen
as x=[x1 x2 x3]T =[θ l ω l NKF i/(N2Jm+Jl)]T . Integrating
the developed friction and the motor model, the dynamic
of the entire system can be formulated as

ż = x2 −N(x2)z,

ẋ1 = x2,

ẋ2 = x3 −
σ0

N2Jm + Jl
z+

σ1

N2Jm + Jl
N(x2)z

− σ1 +σ2

N2Jm + Jl
x2 −

Td

N2Jm + Jl
,

ẋ3 =− NKF R
L(N2Jm + Jl)

x3 −
NKF KE

L(N2Jm + Jl)
x2

+
NKF

L(N2Jm + Jl)
u.

(4)

Define the lumped disturbance and unknown parameters
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as

θ1=
σ0

N2Jm+Jl
, θ2=

σ1

N2Jm+Jl
, θ3=

σ1 +σ2

(N2Jm+Jl)KF
,

θ4=
dn

N2Jm + Jl
, θ5=

NKF

(N2Jm + Jl)L
, d̃=

Td −dn

N2Jm + Jl
,

θ6 =
NKF KE

(N2Jm + Jl)L
, θ7 =

NKF R
(N2Jm + Jl)L

, (5)

where dn is the constant part of Td and d̃ is the time-
varying part. We assume that θ ∈ Ωθ = {θ : θmin ≤ θ ≤
θmax} and |d̃(t)| ≤ δ1(t), where θmin = [θ1min, . . . ,θ7min]

T ,
θmax = [θ1max, . . . ,θ7max]

T , and δ1(t) is known.
Thus the state-space equation can be formulated as

ż = x2 −N(x2)z,

ẋ1 = x2,

ẋ2 = x3 −θ1z+θ2N(x2)z−θ3x2 −θ4 − d̃,

ẋ3 = θ5u−θ6x2 −θ7x3.

(6)

2.2. Projection mapping and parameter adaptation
Let θ̂ denote the estimate of θ and θ̃ the estimation

error (i.e., θ̃ = θ̂ −θ ). A discontinuous projection can be
defined as

Projθ̂i
(•i) =


0 if θ̂i = θimax and •i > 0,

0 if θ̂i = θimin and •i < 0,

•i otherwise,

(7)

where i = 1, . . . , 7. By using an adaptation law given by

˙̂θ = Projθ̂ (Γτ) with θmin ≤ θ̂(0)≤ θmax, (8)

where Γ is a positive diagonal adaptation rate matrix, and
τ is an adaptation function to be synthesized later; for any
adaption function τ , the projection mapping used in (10)
guarantees

(P1) θ̂ ∈ Ωθ̂ =
{

θ̂ : θmin ≤ θ̂ ≤ θmax
}
,

(P2) θ̃ T [Γ−1Projθ̂ (Γτ)− τ]≤ 0, ∀τ. (9)

In order to handle different characteristics of z, robust
observers with projection type modifications were pro-
posed in [16], based on the dual-observer structure [17]:

˙̂z1 = Projẑ1
(η1), ˙̂z2 = Projẑ2

(η2), (10)

where ẑ1, ẑ2 are estimates of the unmeasurable friction
state z; η1 and η2 are learning functions to be synthesized
later.

3. CONTROLLER DESIGN

3.1. Adaptive robust controller (ARC) design
According to these explicit nonlinear models, an adap-

tive robust backstepping control technique with carefully

chosen Lyapunov functions is proposed. The design pro-
cedure is as follows:

Define a set of switching-function-like quantities as

e2 = ė1 + k1e1 = x2 − x2eq, e3=x3 −α2, (11)

where e1 = x1 − x1d(t) is the output tracking error; k1 is a
positive feedback gain.

The robust control law α2 consists of two terms given
by 

α2 = α2a +α2s,

α2a = ẍ1d + θ̂1ẑ1 − θ̂2N(x2)ẑ2 + θ̂3x2 + θ̂4,

α2s = α2s1 +α2s2, α2s2 =−k2se2 =−h1 +1
4ε1

e2,

α2s1 =−k2e2 −g2 ∥Γφ2∥2 e2,

φ2 = [−ẑ1,N(x2)ẑ2,−x2,−1,0,0,0]T ,
(12)

where k2 is a positive constant and Γ is a positive definite
constant diagonal matrix, ε1 is any positive scalar and h1

is any smooth function satisfying the following conditions

h1 ≥ [||θM||||φ2||+θ1MzM +θ2MN(x2)zM]
2, (13)

in which θM = θmax − θmin, θ1M = θ1max − θ1min, θ2M =
θ2max −θ2min, zM = zmax − zmin.

The following actual control law u is proposed:

u = ua +us,

ua =
1
θ̂5

(θ̂6x2 + θ̂7x3 + α̇2 +
∂α2

∂x1
x2 +

∂α2

∂x2
x3),

us =
1

θ5min
(us1 +us2), us2 =−ks3e3 =−h2 +1

4ε2
e3,

us1 =−k3se3k3s = k3 +d3

∥∥∥∥∂α2

∂ θ̂

∥∥∥∥2

+g3 ∥Γφ3∥2 ,

φ3 = [0,0,0,0,ua,−x2,−x3]
T ,

(14)

where k3 is a positive constant, ε2 is any positive scalar and
h2 is any smooth function satisfying the following condi-
tions

h2 ≥||θM||2
(
||φ3||2max +

∣∣∣∣∂α2

∂α2

∣∣∣∣2
max

||φ3||2max

)

+δ 2
1 +

∣∣∣∣∂α2

∂α2

∣∣∣∣2
max

δ 2
1 . (15)

Theorem 1: Let the parameter estimates be updated by
the projection type adaptation law (8) in which τ is chosen
as τ = φ2e2 +

(
φ3 − ∂α2

∂x2
φ2

)
e3, the projection type state

observation (10) and learning functions given by

η1 = x2 −N(x2)ẑ1 − γ1e2,
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η2 = x2 −N(x2)ẑ2 + γ2N(x2)e2, (16)

where γ1 and γ2 are learning gains.
If the control parameters g j, j = 2, 3, are selected such

that g j >
1

2d3
and the matrix Λ defined below is positive

definite

Λ =

 k1 −1
/

2 0
−1
/

2 k2 −κ1
/

2
0 −κ1

/
2 κ2

 , (17)

where

κ1 = 1+
∣∣∣∣∂α2

∂x2

∣∣∣∣(k2s +
1

4ε3

)
,κ2 = k3 +

∂α2

∂x2
, (18)

then the proposed control law (14) guarantees that
A) In general, all signals are bounded. Furthermore, the

positive definite function V defined by

V (t) =
1
2

e2
1 +

1
2

e2
2 +

1
2

e2
3 (19)

is bounded by

V (t)≤V (0)exp(−κt)

+ ε
1+ ||δ (t)||∞

κ
[1− exp(−κt)], (20)

where ε = ε1 + ε2, and κ = 2λmin(Λ), δ (t) =
max{δ 2

1 (t))}.
B) If after a finite time t0, d̃ = 0, in addition to results in

A), asymptotic output tracking is also achieved, i.e., e1 →
0 as t → ∞.

Proof of Theorem 1: If the system exists time-variant
modeling errors, noting that θ5/θ5min > 1, based on the
condition of h1 and h2, the time derivative of V satisfies

V̇ ≤− eT Λe−g2 ∥Γϕ2∥2 e2
2 −d3

∥∥∥∥∂α2

∂ θ̂

∥∥∥∥2

e2
3

−g3 ∥Γϕ3∥2 e2
3 + ε + εδ 2

1 (t)−
∂α2

∂ θ̂
˙̂θe3

− γ−1
1 θ1N(x2)z̃2

1 − γ−1
2 θ2N(x2)z̃2

2, (21)

where e = [e1 e e3]
T .

Hence, if g j, j = 2, 3, are selected to satisfy the condi-
tions g j >

1
2d3

, it can be inferred that

−∂α2

∂ θ̂
˙̂θe3 ≤

∥∥∥∥∂α2

∂ θ̂
d3

∥∥∥∥2

e2
3 +

3

∑
j=2

∥g jΓϕ j∥2 e2
j . (22)

Combining (21) and (22), it can be obtained that

V̇ ≤−κV + ε + εδ (t). (23)

Thus, e is bounded which means the state x is bounded.
From property P1 in (9), all estimated parameters are
bounded, thus the control input u is bounded. That proves
all signals in the closed loop systems are bounded.

Now for B), defining a Lyapunov function as

Vo =
1
2

e2
1 +

1
2

e2
2 +

1
2

e2
3

+
1
2

θ̃ T Γ−1θ̃ +
1
2

θ1γ−1
1 z̃2

1 +
1
2

θ2γ−1
2 z̃2

2. (24)

Noting the condition d̃ = 0, and combing the proof of
conclusion A, the time derivative of V0 satisfies

V̇o ≤−eT Λe ≤−λmin(Λ)(e2
1 + e2

2 + e2
3) =−W. (25)

Therefore, Vo ∈ L∞ and W ∈ L2. Since all signals are
bounded, from (25), it is easy to check that Ẇ is bounded
and thus uniformly continuous. By Barbalat’s lemma,
W → 0 as t → ∞ [16], which leads to B) of Theorem 1.

□
Remark 1: As done in [17], we just simply choose k1,

k2, and k3 large enough in experiments while without wor-
rying about the specific prerequisites. By doing so, pre-
requisites (17) will be satisfied for certain sets of values of
k1, k2, and k3, at least locally around the desired trajectory
to be tracked.

3.2. Desired compensation ARC controller design

DCARC uses desired trajectory signals to form regres-
sor, which has been shown to outperform ARC in terms of
all indexes [17]. Following the same design procedure as
in [19], a DCARC law using the proposed friction model
is also constructed as follows.

As shown in [19], by applying mean value theorem, Ñ
satisfies the following inequalities:∣∣Ñ∣∣= |θ2z(N(x2)−θ2N(ẋ1d))| ≤ c1 |e1|+ c2 |e2| ,

(26)

where c1 and c2 are some positive constants.
By referring to [14], the robust control law α2 consists

of two terms given by

α2 = α2a +α2s,

α2a = ẍ1d + θ̂1ẑ1 − θ̂2N(ẋ1d)ẑ2 + θ̂3ẋ1d + θ̂4,

α2s = α2s1 +α2s2,α2s1 =−k2se2,

k2s ≥ k2 +β2||Γ2φ2d ||2,

α2s2 =−h3 +1
2ε3

e2,

φ2d = [−ẑ1,N(ẋ1d)ẑ2,−ẋ1d ,−1,0,0,0]T ,

(27)

where k2s is a positive constant feedback gain and β2 is a
positive definite constant, k2 is any positive scalar and h3

is any smooth function satisfying the following conditions

h3 ≥ ||θM||2||φ2d ||2 +δ 2
1 . (28)
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The actual control input u is proposed:

u = ua +us,

ua =
1
θ̂5

(
θ̂6ẋ1d + θ̂7x3d +

∂α2

∂x1
ẋ1d +

∂α2

∂x2
ẍ1d

)
,

x3d = ẍ1d + θ̂1ẑ1 − θ̂2N(ẋ1d)ẑ2 + θ̂3ẋ1d + θ̂4,

us =
1

θ̂5min
(us1 +us2) , us2 =−ks3e3 =−1+h4

4ε4
e3,

us1 =−k3sz3, k3s ≥ k3 +d2

∥∥∥∥∂α2

∂ θ̂

∥∥∥∥2

+β3 ∥Γ2ϕ3∥2 ,

φ3d =
[

0 0 0 0 ua −ẋ1d −x3d
]
,

(29)

where k3s, k3 are positive constants, d2, β3 are positive def-
inite constants and ϕ3 is a regressor to be specified later, h4

is any smooth function satisfying the following conditions

h4 ≥||θM||2
(
||φ3d ||2max +

∣∣∣∣∂α2

∂α2

∣∣∣∣2
max

||φ3d ||2max

)

+δ 2
1 +

∣∣∣∣∂α2

∂α2

∣∣∣∣2
max

δ 2
1 . (30)

Theorem 2: Let the parameter estimates be updated by
the projection type adaptation law (8) in which τ is chosen
as

τ = ϕ2dz2 +ϕ3z3, ϕ3 = φ3d −
∂α2

∂x2
φ2d . (31)

The projection type state observation (10) and learning
functions given by

η1 = x2 −N(x2)ẑ1 − γ1e2,

η2 = x2 −N(x2)ẑ2 + γ2N(x2)e2, (32)

where γ1 and γ2 are learning gains.
If the control parameters β j, j = 2, 3, are selected such

that β j >
1

2d2
and the feedback gains k1, k2, k3 are chosen

large enough such that the matrix defined below is positive
definite

Λ1 =

 k1 −γ3
/

2 −γ5
/

2
−γ3

/
2 γ4 −γ6

/
2

−γ5
/

2 −γ6
/

2 γ7

 , (33)

where

γ3 = 1+ k1 (k1 +θ3max)+ c1, γ4 = k2 − k1 −θ3max − c2,

γ6 = 1+
(

θ7max +

∣∣∣∣∂α2

∂x2

∣∣∣∣)(k2s +
1

4ε3

)
+θ6max

+(θ3max + c2)

∣∣∣∣∂α2

∂x2

∣∣∣∣ ,
γ7 = k3 +θ7min +

∂α2

∂x2
,

γ5 = k1θ6max + k1

∣∣∣∣∂α2

∂x2

∣∣∣∣θ3max + c1

∣∣∣∣∂α2

∂x2

∣∣∣∣ . (34)

Then, the proposed control law (29) guarantees that
A) In general, all closed loop signals are bounded. In

general, all signals are bounded. Furthermore, the positive
definite function

Va =
1
2

e2
1 +

1
2

e2
2 +

1
2

e2
3 (35)

is bounded by

Va ≤Va(0)exp(−κt)+ ε
1+ ||δ (t)||2∞

κ
[1− exp(−κt)],

(36)

where κ = λmin(Λ1) is the exponentially converging rate.
ε = ε3 + ε4.

B) If after a finite time t0, d̃ = 0, in addition to results in
A), asymptotic output tracking is also achieved, i.e., e1 →
0 as t → ∞.

Proof of Theorem 2: According to the deductive
method in the proof of Theorem 1, it can be obtained that

V̇a ≤−λVa + ε + εδ 2
1 (t), (37)

which leads to (36) and the results in A) of Theorem 2 can
be inferred.

Now go to the proof of conclusion B of Theorem 2.
Choose a positive definite function Vb as

Vb =Va +
1
2

θ̃ T Γ−1θ̃ +
1
2

θ1γ−1
1 z̃2

1 +
1
2

θ2γ−1
2 z̃2

2. (38)

Noting the condition d̃ = 0, and combing the proof of
conclusion A), the time derivative of Vb satisfies

V̇b ≤−eT Λ1e ≤−λmin(Λ1)(e2
1 + e2

2 + e2
3) =−W.

(39)

Therefore, similar to the proof of B) of Theorem 1, the
results in B) of Theorem 2 can be proved, by applying
Barbalat’s lemma and the fact that all signals are bounded.

□
Remark 2: Results of Theorem 2 indicate that the pro-

posed desired compensation ARC controller (35) has the
same performance properties as the previous ARC con-
troller (16). Furthermore, the DCARC law (35) also has
the following advantages: (i) Since the regressor φ2d and
φ3d depend on the reference trajectory only, it is bounded
and can be calculated offline to save on-line computation
time if needed. (ii) Gain tuning process becomes simpler
since some of the bounds like the bound of the first term
inside the bracket of the left hand side of (8) can be es-
timated offline. (iii) The effect of measurement noise is
reduced.
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Table 1. Estimated parameters of the verification plat-
form.

Parameters Value Parameters Value
KF 0.65 B 0.065
Jm 3.2×10−4 N 8.8
Jl 11 KE 0.56

4. COMPARATIVE EXPERIMENTAL RESULTS

4.1. Experiment setup
To verify above controller design and study fundamen-

tal problems in high accuracy tracking control of the
TEOGSP system associated with nonlinear friction com-
pensation, a verification platform has been set up. Speci-
fications of initial estimated parameters are listed in Table
1. More details of this platform including system parame-
ters can be found in [17].

4.2. Comparative experimental results
The following five controllers are compared to verify

the effectiveness of the proposed control schemes in the
next experiments:

1) ARCF: This is the adaptive robust controller (14)
with static friction model (3) proposed in this paper. The
bounds of parametric ranges are given by θmin = [0, 0, 0,
−0.01, 0, 0, 0, 0]T , θmax = [5× 10−3, 0.1, 0.4, 0.01, 50,
100, 1, 30]T . The initial estimate of θ is chosen as [1.9×
10−3, 1× 10−3, 0.0353, 0, 0.02, 0, 0, 0]T . The bounds
of z estimation are chosen as: zmax = 4 × 10−3, zmin =
−4×10−3. Adaptation rates are set at Γ = diag{0.1, 0.5,
2, 0.3, 0.5, 600, 0.01, 230}. Friction state estimation rates
are set at: γ1 = 1×10−5, γ2 = 1×10−5.

2) DCARCF: This is the desired compensation adaptive
robust controller (29) proposed in this paper. For fair com-
parison, all gains used are chosen same as corresponding
gains of the ARCF controller.

3) ARC: The ARC controller is implemented same as
the proposed ARCF controller but without friction com-
pensation. Other controller parameters of ARC are the
same as the corresponding parameters in the ARCF con-
troller.

4) DCARC: The DCARC controller is implemented
same as DCARCF but without friction compensation,
thus, the gains are chosen same as corresponding gains
of the DCARCF controller.

5) PID: The PID controller parameters are kP = 12, kI =
6, kD = 0.6, which represent the P-gain, I-gain and D-gain
respectively.

To assess the quality of control algorithms, the maxi-
mum tracking error Me, average tracking error µ ,and stan-
dard deviation of the tracking error σ defined in [17] are
utilized.

To verify the performance of the proposed controllers,

Fig. 2. Tracking errors of five controllers in normal case,
PID, ARC, ARCF, DCARC, DCARCF, respec-
tively.

Table 2. Performance indexes during the last two seconds.

Indexes Me µ σ
PID 0.0581 0.0132 0.0106
ARC 0.0283 0.0125 0.0076

ARCF 0.0260 0.0122 0.0073
DCARC 0.0234 0.0091 0.0046

DCARCF 0.0152 0.0059 0.0034

the five controllers are tested for a sinusoidal-like mo-
tion trajectory x1d = 10cos(3.14t)◦. The corresponding
tracking errors under five controllers are shown in Fig. 2.
The experimental results in terms of performance indexes
are given in Table 2. From these results, the proposed
DCARCF controller has a better performance than the
other four controllers in terms of both transient and final
tracking errors; while ARCF also employed the explicit
friction model and thus obtained better performance than
ARC and PID. Moreover, by using the parameter adap-
tation as shown in Fig. 3. The final tracking error of
DCARCF is reduced almost down to 0.015◦ while PID has
large quadrant glitch (about 0.06◦) due to the large fric-
tion disturbance during velocity reversal. This illustrates
the effectiveness of using the adjustable desired compen-
sation technique which can effectively overcome the fric-
tion disturbance in practice.

To further test the performance of the modified LuGre
model based friction compensation scheme in the pro-
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Fig. 3. Parameter estimations of DCARCF controller.

Table 3. Performance indexes during the last two seconds.

Indexes Me µ σ
PID 0.0247 0.0032 0.0050
ARC 0.0111 0.0032 0.0022

ARCF 0.0099 0.0024 0.0021
DCARC 0.0101 0.0016 0.0023

DCARCF 0.0077 0.0012 0.0014

posed algorithm, in this experimental test, a slow motion
trajectory x1d = cos(3.14t)]◦ is given. The tracking errors
of the five controllers are shown in Fig. 4, respectively.
The performance indexes with this case are collected in
Table 3. As seen, even for such a slow tracking experiment
under strong nonlinear friction, the proposed DCARCF
controller is able to compensate the modeled nonlinear
friction and attenuate unmodeled effects and an improved
performance is achieved in comparison to the other four
controllers. The parameter estimation of DCARC are
omitted since they are regular and bounded. More clear
comparison is presented in Fig. 5. Whereas, parameter
adaptation can improve the tracking performance, as done
in ARC and DCARC.

5. CONCLUSION

In this paper, a continuous desired compensation ARC
controller have been developed for the TEOGSP systems.
By employing the priori bounds on parameter variations
and unmeasured friction internal state, discontinuous pro-

Fig. 4. Tracking errors of five controllers in slow tracking
case.

Fig. 5. Parameter estimations of DCARCF controller.

jection mapping is utilized in learning process to improve
the stability of parameter adaptation and friction state es-
timation. Hence, the synthesized adaptive model com-
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pensation and regressor depend on the desired trajectory
and parameter estimates only, which facilitates the control
gains tuning process and alleviates the effect of measure-
ment noise on the adaptive model compensation. Com-
parative experimental results will be shown to verify the
effectiveness of the DCARC algorithm.
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